Experiments in learning distributed control for a hexapod robot

نویسندگان

  • Tim D. Barfoot
  • Ernest J. P. Earon
  • Gabriele M. T. D'Eleuterio
چکیده

This paper reports on experiments involving a hexapod robot. Motivated by neurobiological evidence that control in real hexapod insects is distributed leg-wise, we investigated two approaches to learning distributed controllers: genetic algorithms and reinforcement learning. In the case of reinforcement learning, a new learning algorithm was developed to encourage cooperation between legs. Results from both approaches are presented and compared. c © 2006 Published by Elsevier B.V.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

Kinematic and Gait Analysis Implementation of an Experimental Radially Symmetric Six-Legged Walking Robot

As a robot could be stable statically standing on three or more legs, a six legged walking robot can be highly flexible in movements and perform different missions without dealing with serious kinematic and dynamic problems. An experimental six legged walking robot with 18 degrees of freedom is studied and built in this paper. The kinematic and gait analysis formulations are demonstrated by an e...

متن کامل

A biologically inspired approach to feasible gait learning for a hexapod robot

The objective of this paper is to develop feasible gait patterns that could be used to control a real hexapod walking robot. These gaits should enable the fastest movement that is possible with the given robot’s mechanics and drives on a flat terrain. Biological inspirations are commonly used in the design of walking robots and their control algorithms. However, legged robots differ significant...

متن کامل

Design, Modeling and Preliminary Control of a Compliant Hexapod Robot

In this paper, we present the design, modeling and preliminary control of RHex, an autonomous dynamically stable hexapod possessing merely six actuated degrees of freedom (at the hip attachment of each leg). Our design emphasizes mechanical simplicity as well as power and computational autonomy, critical components for legged robotics applications. A compliant hexapod model, used to build a sim...

متن کامل

Adaptive Hexapod Gait Control Using Anytime Learning with Fitness Biasing

Adaptive learning systems that generate control programs for robots with varying capabilities is of importance in the implementation of autonomous robots. Learning done continuously with the best possible control program running the robot (anytime learning) can achieve the adaptability desired when implemented using some form of evolutionary computation. The difficulty with this method is that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Robotics and Autonomous Systems

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2006